Bayesian Conditional Generative Adverserial Networks
نویسندگان
چکیده
Traditional GANs use a deterministic generator function (typically a neural network) to transform a random noise input z to a sample x that the discriminator seeks to distinguish. We propose a new GAN called Bayesian Conditional Generative Adversarial Networks (BC-GANs) that use a random generator function to transform a deterministic input y′ to a sample x. Our BC-GANs extend traditional GANs to a Bayesian framework, and naturally handle unsupervised learning, supervised learning, and semi-supervised learning problems. Experiments show that the proposed BC-GANs outperforms the state-of-the-arts.
منابع مشابه
Conditional Generative Moment-Matching Networks
Maximum mean discrepancy (MMD) has been successfully applied to learn deep generative models for characterizing a joint distribution of variables via kernel mean embedding. In this paper, we present conditional generative moment-matching networks (CGMMN), which learn a conditional distribution given some input variables based on a conditional maximum mean discrepancy (CMMD) criterion. The learn...
متن کاملPros and Cons of GAN Evaluation Measures
Generative models, in particular generative adverserial networks (GANs), have received a lot of attention recently. A number of GAN variants have been proposed and have been utilized in many applications. Despite large strides in terms of theoretical progress, evaluating and comparing GANs remains a daunting task. While several measures have been introduced, as of yet, there is no consensus as ...
متن کاملEfficient Heuristics for Discriminative Structure Learning of Bayesian Network Classifiers
We introduce a simple order-based greedy heuristic for learning discriminative structure within generative Bayesian network classifiers. We propose two methods for establishing an order of N features. They are based on the conditional mutual information and classification rate (i.e., risk), respectively. Given an ordering, we can find a discriminative structure with O ( Nk+1 ) score evaluations...
متن کاملThe Dialog State Tracking Challenge with Bayesian Approach
Generative model has been one of the most common approaches for solving the Dialog State Tracking Problem with the capabilities to model the dialog hypotheses in an explicit manner. The most important task in such Bayesian networks models is constructing the most reliable user models by learning and reflecting the training data into the probability distribution of user actions conditional on ne...
متن کاملCompetitive generative models with structure learning for NLP classification tasks
In this paper we show that generative models are competitive with and sometimes superior to discriminative models, when both kinds of models are allowed to learn structures that are optimal for discrimination. In particular, we compare Bayesian Networks and Conditional loglinear models on two NLP tasks. We observe that when the structure of the generative model encodes very strong independence ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1706.05477 شماره
صفحات -
تاریخ انتشار 2017